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Introduction: experimental device

Figure 1: Diagram representing the main
components of the Penning device, where a
uniform field exists in the axial direction (along
the beam), and a radial E

Ion probe:

n =
Iion

0.99eApvB

where vB =
√

Te/M

Emissive probe1:

Vp ≈ V hot
f + αTe ≈ V hot

f

for continuous recording of Vp

’Two-probe’ method:
cross field current estimation
using local simultaneous Vp and n
assuming a quasi-uniform
azimuthally rotating spoke
behaviour. Then,

j⊥ExB = ne
Eθ
Bz

1
B. Kraus and Y. Raitses, Physics of Plasmas, 25(3):030701, 2018
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Experimental results: activity reduction

Figure 2: Change in oscillatory behaviour of the plasma in changing the boundary condition.

(LEFT) Plots of V̂ = V−〈V 〉
〈V 〉 , with V the measured ion probe signal, for 30G and 150G uniform

field. (RIGHT) Spectrum of the ion probe signal
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Experimental results: feature comparison - anomalous
transport

Figure 3: (LEFT) Comparison of time averaged cross field anomalous current density with
radius. The dotted lines correspond to classical estimation of transport given measured

gradients, Jr = σ
1+(ωc e/νeff )

(
Er + ∂Te

∂r
+ Te

∂ ln n
∂r

)
and σ = ne2

meνeff
, using νeff = n0〈σX v〉.

(RIGHT) Phase resolved transport, with φ = 0 density maximum. These correspond to a 30 G
field case.
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Theoretical framing of results (i)

Figure 4: Estimation of growth rate, γ, using measured gradients for 150G uniform field
(scatter). Calculations are based on Frias-Smolyakov gradient drift instability 3 field theory.3

2
Frias et al., Phys. Plasmas 20, 052108 (2013); doi: 10.1063/1.4804281

3
Frias et al., Phys. Plasmas 20, 052108 (2013); doi: 10.1063/1.4804281
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Introduction: theoretical basis

Frias-Smolyakov 3-field theory:4

Using relevant field gradients Ln and E ,
and noting that L−1

B ≈ 0 for this
particular case, then the dispersion
relation reduces to modified Simon-Hoh,

ω∗
ω − ω0

=
k2
θc

2
s

ω2
(1)

so that instability growth rate is

γ =
kθcs

ω∗

√
ω0ω∗ −

k2
θ c

2
s

4
(2)

and kθ ≈ 1/R

Drift fre-
quencies:
ω∗ = −kθ

kB Te

eBLn

ωD = −2kθ
kB Te
eBLB

≈ 0

ω∗T = −kθ
kB Te
eBLT

ω0 = −kθ
Er
B

4
Frias et al., Phys. Plasmas 20, 052108 (2013); doi: 10.1063/1.4804281
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Highlights

I The anomalous cross field transport is reduced by encasing the
Penning discharge within all conducting boundary

I Density perturbations are reduced significantly (ie. up to an order of
magnitude) but persist, with modified properties such as a more
localised rotating perturbation

I The observations are framed within the three field gradient-drift
instability theory, proposed as a likely seed of the ’spoke’ instability.
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